В апреле текущего года Всемирная организация здравоохранения представила рекомендательный документ, в который вошли 10 способов использования технологий цифровой медицины для массового пользователя.
Цифровизация здравоохранения по данному документу больше рассчитана на телемедицину, которая призвана не только упростить доступ к медицинским услугам для большинства людей, но также и повысить показатели здоровья населения.
Цифровизация медицины предполагает еще и улучшение качества предоставляемых услуг и одним из наиболее интересных решений в этой области является использование искусственного интеллекта. Одной из главных задач ИИ является помощь медикам в предотвращении медицинских ошибок, а также выведение обследований на принципиально новый качественный уровень за счет точности анализа данных и описания.
Одной из наиболее успешных компаний в области ИИ-разработок для применения в медицине является Care Mentor AI, чьи технологии, например, активно применяются в рентгенологии АО «Медицина» (клиника академика Ройтберга).
Преимущества от использования нейросети в постановке радиологических диагнозов, которые можно отметить уже на сегодняшний момент:
- ИИ позволяет описать рентгеновский снимок за 3 секунды — специалист описывает снимок до 20 минут. В связке «ИИ-врач» описание исследования составляет менее 3-х секунд. По нынешним нормативам проведение и описание одного исследования может занимать до 90 минут
- Низкая стоимость работы системы
- ИИ позволяет составить второе мнение для врача–рентгенолога. «Второе мнение» позволяет узнать мнение независимого эксперта, получить больше информации о заболевании и плане лечения. Достоверность диагностики в этом случае повышается на 48%
- Также ИИ позволяет составить второе мнение для врача-клинициста
- ИИ помогает разделить поток пациентов и приоритизацию, сняв значительную часть этой нагрузки с врача
- Не менее важным пунктом является возможность контроля качества посредством технологии и аудита
- Точность системы в описании снимка в связке с врачом составляет 95-98%. Нейросеть выделяет конкретную область, на которой была найдена патология, что позволяет врачу делать вывод на основе снимка очень быстро
Обучение нейросети происходит следующим образом: Прежде чем дать старт тестовому использованию программы, было проанализировано более 200 000 рентгеновских снимков и работа продолжается. Система производит расчет ошибки, а далее специалисты производят настройку сети. В этом мероприятии принимают участие опытные врачи-рентгенологи с большим стажем. Непосредственно каждый рентгеновский снимок не только размечают, но и анализируют 3 эксперта, независимо друг от друга. Если результаты исследований совпадают у всех рентгенологов, то их уже впоследствии использует нейросеть. Далее обученная нейросеть подключается к рентгенологическим системам. Получив снимок пациента, ИИ, на основании ранее полученных и откорректированных данных об исследованиях, делает заключение. Врач, в свою очередь, при необходимости заключение корректирует и дополняет.
По мнению Президента клиники АО «Медицина» Григория Ройтберга, подобная система в течение ближайших нескольких лет заменит в современных клиниках 70-80% врачей рентгенологов.
Источник: robogeek.ru